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• Signal Basics 

• Crate standards 

• NIM 

• CAMAC 

• VME 

• Processing electronics 

• Analysis Electronics 

• Transmission and Noise Reduction 
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• You are (almost) always trying to extract an 

electrical signal from your detector 

• Phosphor screens are a notable exception 

• Gaseous detectors and photomultiplier tubes 

can make life easier with charge multiplication 

but semiconductors normally don’t multiply 

• Electronics can… 

• Sort 

• Amplify 

• Determine timing/coincidence 

• Measure pulse height 

Signals are small…(for the most part) 
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Pulse Mode 

• Most common 

• Observe and count 

individual pulses 

• Timing preserved 

• Amplitude (Energy) is 

measured 

• Rate limited. 

 

Current mode 

• Not uncommon 

• All charge is measured 

via integration 

• Rate independent 

• Pileup is ok 

• Timing information lost 

• Amplitude is lost 

Two different ways for measuring signals 
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• Brief surges of current 

or voltage 

• We measure 

• Existence 

• Polarity 

• Shape 

• Amplitude 

• Width 

• Timing 

Analog pulse signals 
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• The input signal is 

always on. 

• A reference voltage is 

set by the user – 

threshold 

• When the voltage on 

the input goes higher 

than the threshold:  

Output = 1 

• 1 and 0 set by 

user/device 

The discriminator – measuring existence 
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• Not every signal has 

inherent value 

• Most events generate 

multiple signals 

• Timing correlates 

multiple signals with 

the same events 

• Random events must 

be accounted for 

•
𝑑𝑁Rand

𝑑𝑡
=
𝑑𝑁1

𝑑𝑡

𝑑𝑁2

𝑑𝑡
Δ𝑡 

Coincidence measure 
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• Consider a segmented calorimeter designed to 

measure γ’s from 300 MeV to 2000 MeV. 

• γ can deposit energy in groups of one or more cells. 

 

 

 

 

 

• A charged pion might pass through the detector 

and leave energy that should be rejected. 

Photon calorimeter 

Nov. 24, 

2015 
Detector Physics - Lecture 5 8 

Slide courtesy of M. Fortner, N. Illinois University 



• Set of scintillators 

placed in front of a 

calorimeter to act as 

simple counters. 

• A charged particle will 

create a signal in the 

scintillator, but a 

photon will not. 

 

Veto Detector 
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• Simple trigger solution: Sum all the energy in a row when 
not vetoed by the scintillator.  
• If any row exceeds 300 MeV it’s a good event. 

 

 

 

 

 

 

• Trigger will exclude 𝜋’s & soft-𝛾 spray. 

• Trigger inefficient when a good 𝛾 spreads  
energy between two rows 

Neutral rows 
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• Better trigger sums all blocks not vetoed, but insist that 

each cell exceed a 75 MeV threshold 

 

 

 

 

 

 

 

• Excludes 𝜋’s and soft-𝛾 spray 

• Better at finding 2-row 𝛾’s 

Selected Sum 
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• A gate is a circuit element that operates on a binary 
signal 

• Logic operations typically have three methods of 
description: 
• Equation symbol 

• Truth table 

• Circuit symbol 

• When levels refer to Boolean expressions they are 
referred to as True and False. 
• Logic levels are T=True & F=False 

• Binary levels are 1=True & 0=False 

• When levels refer to electronic voltage levels they 
are called High and Low 
• Logic H=High & L=Low 

• Binary levels are 1=High & 0=Low 

Logic gates 
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• The identity operator leaves the value 

unchanged 

 

 

 

• The inverse operation reverses the value and is 

called NOT. 

Unary operators – 1 input 
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• AND operator acts like multiplication 

 

 

 

 

• OR operator acts like addition 

Binary operators – 2 inputs 
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𝐴 

𝐵 

𝐴 ⋅ 𝐵 

𝑨 𝑩 𝑨 ⋅ 𝑩 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

𝐴 

𝐵 

𝐴 + 𝐵 

𝑨 𝑩 𝑨 + 𝑩 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



• Combination of NOT & AND is NAND 

 

 

 

• Combination of NOT & OR is NOR 

Compound operations 
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• Combination of NOT & AND is NAND 

 

 

 

• Combination of NOT & OR is NOR 

 

• Either NAND or NOR gates can be used to 

create other logic gates 

Compound operations 

Nov. 24, 

2015 
Detector Physics - Lecture 5 16 

Slide courtesy of M. Fortner, N. Illinois University 

𝐴 

𝐵 

𝐴 ⋅ 𝐵 

𝐴 ⋅ 𝐵 ⋅ (𝐴 ⋅ 𝐵) = 𝐴 ⋅ 𝐵 

𝐴 + 𝐴 + (𝐵 + 𝐵) = 𝐴 ⋅ 𝐵 



• Exclusive OR 

• Flip-Flops 

• Clocks 

• Counters 

• Multistage dividers 

• A plethora of amplifiers 

• Summation 

• Difference 

• Multipliers 

Many many many many many more 
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• Signal attributes are most easily processed 

when converted to a digital signal 

Analog to digital conversion 
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• Signal attributes are most easily processed 

when converted to a digital signal 

Analog to digital conversion 
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• Signal attributes are most easily processed 

when converted to a digital signal 

Analog to digital conversion 
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• Signal attributes are most easily processed 

when converted to a digital signal 

Analog to digital conversion 

Nov. 24, 

2015 
Detector Physics - Lecture 5 22 

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

V
o

lt
a
g

e
 

time 

Analog

DAC (High Res)



• Signal attributes are most easily processed 

when converted to a digital signal 

Analog to digital conversion 
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• Electronics that analyze systems to be when 

measuring quantized pieces of information. 

• Improving the sampling rate allows for finer 

“level-splitting” but most electronics only have 

two states: 0 and 1 – Logic signals 

• Logic carries less information more reliably 

• Don’t have to worry about maintaining the full 

waveform 

Digital signals make logic easy/possible 

Nov. 24, 

2015 
Detector Physics - Lecture 5 24 



• Electronics that analyze systems to be when 

measuring quantized pieces of information. 

• Improving the sampling rate allows for finer 

“level-splitting” but most electronics only have 

two states: 0 and 1 – Logic signals 

• Logic carries less information more reliably 

• Don’t have to worry about maintaining the full 

waveform 

• It would be easier to define a standard 

• Or 5 standards, it doesn’t really matter as long as we 

know what we’re dealing with 

Digital signals make logic easy/possible 
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Slow positive logic 

• Slow rise time 

• ≥ 100 ns 

• Positive polarity 

• Designed for high input 

impedance (≥ 1000 Ω) 

• Low current 

• Can’t be transmitted over 

long cable 

• Not used so often 

 

Fast negative logic (NIM 

logic) 

• Fast rise time 

• ~1 ns 

• Negative polarity 

• Current based standard & 

low impedance  

• Current into 50 Ω 

• Logic 0: 0 V 

• Logic 1: -0.8 V 

 

 

The Nuclear Instrument Module (NIM) 
standard 

Nov. 24, 

2015 
Detector Physics - Lecture 5 26 

Output must 

deliver 

Input must 

accept 

Logic 0 -2 to +1 V -2 to +1.5 V 

Logic 1 +4 to +12 V +3 to +12 V 

Output must 

deliver 

Input must 

accept 

Logic 0 -1 to +1 mA -4 to +20 mA 

Logic 1 -14 to -18 mA -12 to -36 mA 



• NIM is also a standard 

for electronics modules. 

• Can be single-wide, 

double-wide or triple-wide 

But wait…there’s more 
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• NIM is also a standard 

for electronics modules. 

• Modules are designed to 

mate with a crate 

But wait…there’s more 
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• NIM is also a standard 

for electronics modules. 

• Modules are designed 

to mate with a crate 

• Crate provides 

• ±6V 

• ±12V 

• ±24V 

• All pins bussed 

• No communication 

between modules 

• Modules can be quickly 

added for different 

experimental needs 

• Many lab have pools of 

NIM modules 

But wait…there’s more 
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• NIM signals can be 

counterintuitive or 

limiting so other signal 

standards are often 

included 

• Transistor-Transistor 

Logic (TTL) 

• Positive going logic 

• Emitter Coupled Logic 

(ECL) 

• Faster & easier to use 

than fast negative NIM 

 

 

TTL ECL 

Logic 0 +0 to +0.8 V -1.75 V 

Logic 1 +2 to +5 V -0.90 V 

Common off-standard logic 
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Note the 

smaller 

jump 
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• The NIM standard: 

• Doesn’t handle large amounts of digital data easily 

• Interface with a computer is done on a module by 

module basis 

• Modules are normally wider than they need to be if no 

readout meter is required. 

• A new standard to: 

• Make the modules thinner 

• Include a common dataway for communication 

• Still fit in a standard 19” rack 

CAMAC: Time to make life more 
complicated…interesting 
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• Introduced in 1969 and adopted in 1972 

• 25 module stations 17.2 mm wide 

• Double- and triple-wide modules are allowed 

• Modules normally made of a single PCB with an 

edge connector of 86 contacts. 

• Every station has: 

• ±6V 

• ±12V (not required by standard but normally there) 

• ±24V 

• Separate read and write lines (24 pairs in total) 

 

The Computer Automated Measurement And 
Control (CAMAC) Standard 
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• The extreme right station is the control station 

• All read and write lines connect. 

• A special crate controller module must go in the 

last station 

• System won’t function without a controller 

• Controller 

• Transfers data to/from control PC 

• Communicates with all modules 

• Mediates communication between modules 

• Communication designed for FORTRAN but by 

now there’s translators for every language 

The CAMAC controller 
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• Entire classes could be given on the CAMAC 

standard and communication 

• Leo Chapter 18 is a great start 

• Fermilab’s Introduction to CAMAC 

• http://cdorg.fnal.gov/ese/prep/introCamac.php 

• CAMAC Tutorial Issue, IEEE Trans. Nucl. Sci. 

NS-20 2 (1973)  

• http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=

4327008&punumber=23 

 

For more on CAMAC 
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• As experiments grew larger, the CAMAC data 

busses couldn’t keep up and latency increased 

• Dead time = Bad 

• Modules expensive 

• Not hot-swappable 

• VME designed to accommodate fast 

microprocessor control 

• Made with industry standard parts so cheaper 

From CAMAC to VME 
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• VME crate requires a controller 

• Performs bus arbitration 

• Provides and maintains timeout errors 

• System clock 

• Other system utilities 

• Modules can send messages directly to each 

other 

• Controller only opens and closes access to dataway 

• Communication is asynchronous and can 

proceed as fast as the slowest communicator 

• VMEbus modules tend to be set via software 

only 

From CAMAC to VME 
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For more on VME 

• W. D. Peterson, The VMEbus Handbook, VITA, Scottsdale, Az 
1997. 

• American National Standard for VME64 Extensions for Physics and 
Other Applications 
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• The goals of signal transmission 

• Get the signal from point A to point B 

• Preserve the signal’s information 

• We tend to think of a connecting wire as 

something with negligible C and negligible self-

inductance where any voltage applied at one 

end is immediately present at the other end. 

• Not So 

• Rule of thumb: 𝑙line ≤ 0.02𝑡𝑟𝑐 

• For 𝑡𝑟 = 10 ns: 𝑙𝑙𝑖𝑛𝑒 ≤ 𝟔 cm 

• Need transmission lines (wave guide) 

Transmission lines 
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• Transmission lines carry rf signals efficiently 

• But a pulse isn’t rf. 

• What gives? 

Transmission lines 
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• Any pulse can be decomposed into a 

superposition of many pure sinusoidal 

frequencies 

Fourier Analysis 
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• Any pulse can be decomposed into a 

superposition of many pure sinusoidal 

frequencies 

• A pulse: 

• Shape in time 𝑓(𝑡) 

Fourier Analysis 

Nov. 24, 

2015 
Detector Physics - Lecture 5 44 

𝑡 

𝑉 

𝑓 𝑡 =
1

2𝜋
 𝑔(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 

𝑡 

𝑉 

𝑔 𝜔 =
1

2𝜋
 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 



𝑉𝑇 

• Any pulse can be decomposed into a 

superposition of many pure sinusoidal 

frequencies 

• A pulse: 

• Shape in time 𝑓(𝑡) 

Fourier Analysis 
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• All frequencies contribute in a perfect 

reproduction…but who wants to be perfect? 

• If you perform the inverse Fourier transform over 

a fixed interval: 

 

 

 

 

 

• Δ𝜈 > 1
𝑇  for reasonable approximation 

• For a 10 ns pulse: Δ𝜈 ≥ 100 MHz 

Bandwidth 
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• Δ𝜈 > 1
𝑇  for 

reasonable 

approximation 

• For a 10 ns pulse: 

Δ𝜈 ≥ 100 MHz 

• 3 dB decline in 

response: bandwidth 

• Corresponds to ~70% 

of the original signal 

 

Bandwidth 
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The coaxial cable 
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commons 



• Minimizes pickup from 

electric and 

electromagnetic fields 

• Shield is normally 

braided for flexibility 

• Velocity of propagation 

𝑣𝑝  a function of: 

• 1/ 𝑘 

• Separation between 

inner and outer 

conductor 

• 𝑣𝑝 polyethelyne ≈ 0.66𝑐 

• Characteristic 

impedance also a 

function of: 

• 𝑘 

• Separation between 

inner and outer 

conductor 

 

The coaxial cable 
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• Cable has characteristic impedance 𝑅 

• Imagine a generator creating a step voltage 

change from 0 to 𝑉0 at 𝑡 = 0 

• Step travels along at 𝑣𝑝 drawing 𝐼 =
𝑉0

𝑅
 until the signal 

reaches the end of the cable 

 

Termination 
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• Cable has characteristic impedance 𝑅 

• Imagine a generator creating a step voltage 

change from 0 to 𝑉0 at 𝑡 = 0 

• Step travels along at 𝑣𝑝 drawing 𝐼 =
𝑉0

𝑅
 until the signal 

reaches the end of the cable 

• Things get interesting at the end 

• If 𝑅𝑡 = 𝑅 → The signal won’t reflect 

• If 𝑅𝑡 = 0 → Inverted signal reflected 

Termination 
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• Cable has characteristic impedance 𝑍0 

• Imagine a generator creating a step voltage 

change from 0 to 𝑉0 at 𝑡 = 0 

• Step travels along at 𝑣𝑝 drawing 𝐼 =
𝑉0

𝑍0
 until the signal 

reaches the end of the cable 

• Things get interesting at the end 

• If 𝑅𝑡 = 𝑍0 → The signal won’t reflect 

• If 𝑅𝑡 = 0 → Inverted signal reflected 

• If 𝑅𝑡 = ∞ → Same polarity signal reflected 

Termination 
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Termination 
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vs 

𝑅𝑡 

• Given a cable with 

• Characteristic impedance 𝑍0 

• Input waveform with amplitude 𝐴0 

𝑹𝒕 Reflected amplitude, A 

0 −𝐴0 

0 < 𝑅𝑡 < 𝑍0 −𝐴0 < 𝐴 < 0 

𝑍0 0 

𝑍0 < 𝑅𝑡 < ∞ 0 > 𝐴 > 𝐴0 

∞ 𝐴0 
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