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• Scintillation Detectors 

• Organic v. inorganic crystals 

• Detection efficiency 

• Light output response 

• Photomultiplier Tubes 

• Photocathodes 

• Electron optics 

• Charge multiplication/dynodes 

Outline 
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• Similarities: 

• Takes advantage of the increased density of crystal 

lattices 

• Makes use of band gap energies 

• Doping lowers the energy required for a measureable 

interaction 

• Differences: 

• Whereas scintillators re-radiate the energy absorbed 

as photons, semiconductors “move” electrons. 

From semiconductors to scintillators 
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• Ionizing radiation ionizes and/or excites the 

matter it passes through. 

• When the excited matter returns to g.s. in some 
materials γ’s are in the visible range. 

• Radioluminesence 

• The most efficient materials for visible γ 

generation are called scintillators. 

• If light emission continues for > 1 ms  

• Phosphor 

Scintillators 
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Energy Collection 

• Counters need only note that 

some energy was collected. 

 

• For calorimetery the goal is to 

convert the incident energy to 

a proportional amount of light. 

• Losses from shower 

photons 

• Losses from fluorescence 

x-rays 

Slide courtesy of M. Fortner, N. Illinois University 
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Photon Statistics 

Typical Problem 

• Gamma rays at 450 keV are 

absorbed with 12% efficiency. 

Scintillator photons with 

average 2.8 eV produce 

photoelectrons 15% of the 

time. 

• What is the energy to produce 

a measurable photoelectron? 

• How does this compare to a 

gas detector (W-value)? 

 

Answer 

• The total energy of scintillation 

is 450 x 0.12 = 54 keV. 

• 5.4 x 104 / 2.8 = 1.93 x 104 

photons produced 

• 1.93 x 104 x 0.15 = 2900 

photoelectrons produced 

• The equivalent W-value for the 

scintillator is:  

• 450 keV/2900 = 155 eV/pe 

• W-value in gas = 30 eV/ip 
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• High efficiency γ production. 

• Transparent to the λ of the emitted γ. 

• n ~ 1.5 

• τ should decay quickly and with minimal delay. 

•  𝑁𝛾 ∝ 𝐸 

• Pulse shape discrimination 

• Cheap would be nice 

Good Scintillator Requirements 

Nov 16, 

2015 
Detector Physics - Lecture 4 7 



• Made of linked or 

condensed benzene 

structures. 

• Tend to be expensive. 

• Liquid scintillator 

made by dissolving 

material in solvent 

• Plastic scintillators 

radiate UV 

• Cheaper 

• Wavelength shifters 

(flour) required 

Organic Scintillators 
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https://en.wikipedia.org/wiki/Anthracene 

Anthracene 

Stilbene 

https://en.wikipedia.org/wiki/(Z)-Stilbene 



• Carbon in molecules 

has one excited 

electron. 

• G.S. 1s22s22p2 

• Excited 1s22s12p3 

• Hybrid p-orbitals are 

p-orbitals. 

• Overlapping p-orbitals 

form bonds 

• Appears in double 

bonds 

Pi-Bonds  

Slide courtesy of M. Fortner, N. Illinois University 
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• Above 125 keV e- 

response is linear 

• Proton/heavy particle 

always has a lower 

response 

• MeV electrons 

equivalent (MeVee) 

• 1 MeV e- → 1 MeVee 

• >2 MeV p → 1 MeVee 

Organic scintillator response 
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Organic scintillator response 
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To account for the probability of quenching: 

Organic scintillator response 
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To account for the probability of quenching: 

 

 

 

For high-E e-, 𝑑𝐸 𝑑𝑥  is small 

 

 

The light output is linearly related to 𝐸 

Organic scintillator response - electrons 
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To account for the probability of quenching: 

 

 

 

For α’s, 𝑑𝐸 𝑑𝑥 ≫ 1 

Organic scintillator response – α’s 
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Organic Scintillators 
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• Fluorescence is known 

in many natural 

crystals. 

• UV light absorbed 

• Visible light emitted 

• Artificial scintillators 

can be made from 

many crystals. 

• Doping impurities added 

• Improve visible light 

emission 

• Higher density =  

More interaction = 

More efficient 

Inorganic Scintillators 
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• Impurities in the 

crystal provide energy 

levels in the band 

gap. 

• Charged particles 

excites electrons to 

states below the 

conduction band. 

• De-excitation causes 

photon emission. 

• Crystal is transparent 

at photon frequency. 

 

Band Structure 

conduction band 

valence band 

hn 
impurity excited states 

impurity ground state 
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• Jablonski diagrams 

characterize the energy 

levels of the excited 

states. 

• Vibrational transitions 

are low frequency 

• Fluorescence and 

phosphorescence are 

visible and UV 

• Transitions are 

characterized by a peak 

wavelength lmax. 

Jablonski Diagram 
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• Fluorescence typically 

involves three steps. 

• Excitation to higher 

energy state. 

• E loss through change 

in vibrational state 

• Emission of 

fluorescent photon. 

• The time for 1/e of the 

atoms to remain 

excited is the 

characteristic time t. 

 

Time Lag 
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S1 
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10-7 s 

Slide courtesy of M. Fortner, N. Illinois University 



Decay Constant (τd) 
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Crystal Specs 

www.detectors.saint-gobain.com 

• Common crystals are 

based on alkali 

halides 

• Thallium or sodium 

impurities 

• Fluorite (CaF2) is a 

natural mineral 

scintillator. 

• (BGO, Bi4Ge3O12) is 

popular in physics 

detectors. 
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Crystal τ  

(ns) 

λmax  

(nm) 

Output 

(nm) 

Na(Tl) 250 415 100 

CsI(Tl) 1000 550 45 

CsI 16 315 5 

ZnS(Ag) 130 110 450 

CaF2(Eu) 930 435 50 

BGO 300 480 20 

Slide courtesy of M. Fortner, N. Illinois University 
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• The radiation that interacts with the scintillator 

generates photons. 

• We can’t count photons. 

• We can manipulate them. 

• Light guides can reflect and transmit photons at near 

100% efficiency. 

• We can send them into materials to generate 

predictable behavior. 

What can we do with photons 
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• Counting photons 

requires conversion to 

electrons. 

• The photoelectric effect 

can eject electrons from 

a material into a 

vacuum. 

• Exceed gap energy 𝐸𝑔 

and electron affinity 

energy 𝐸𝐴 

• Compare to work 

function 𝜓 

 

Slide courtesy of M. Fortner, N. Illinois University 
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• Reflection coefficient 𝑅 

• Photon absorption 𝑘 

• Mean 𝑒 escape length 

𝐿 

• Probability to eject 

from surface 𝑃𝑠 

• Probability to reach 

vacuum energy 𝑃𝑉 

 

• There is a probability 

that a photon will 

produce a free 

electron. 

• Depends on bulk 

material properties & 

atomic properties 

• This is expressed as 

the quantum efficiency 

𝜂(𝜈). 

 

Quantum Efficiency 
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Slide courtesy of M. Fortner, N. Illinois University 
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• Different 

photocathodes vary in 

response to 𝜈 and 𝜂(𝜈). 

• Alkali for UV detection 

(Cs-I, Cs-Te) 

• Bialkali for visible light 

(Sb-Rb-Cs, Sb-K-Cs) 

• Semiconductors for 

visible to IR (GaAsP, 

InGaAs) 

 

 

Commercial Photocathodes 
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Hamamatsu.com 

Slide courtesy of M. Fortner, N. Illinois University 



• Single electrons are 

hard to detect. What to 

do? 

• Stronger Field 

• Gives electrons more 

energy 

• If the electrons have 

enough energy to ionize 

along their path 

• Constant E-field so 

avalanche everywhere 

Challenge: 
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 • Electrons can be 

multiplied by 

interaction with a 

surface. 

• Emitter: BeO, GaP 

• Metal substrate: Ni, 

Fe, Cu 

• This electrode is 

called a dynode. 

 

Electron Multiplier 

substrate 

electrode 

e 

emissive surface 
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• PMTs combines a 

photocathode and 

series of dynodes. 

• High voltage is divided 

between the dynodes.  

• Output current is 

measured at the 

anode. 

• Sometimes at the last 

dynode 

 

 

Photomultiplier Tube (PMT) 

Slide courtesy of M. Fortner, N. Illinois University 
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Gain (𝜹) 

• 𝛿 depends on the 

material and 𝑉. 

• 𝑘 typically 0.7-0.8 

• Multiple dynodes are 

staged to increase gain. 

• Photocathode current 𝐼𝑑0 

• Input stage current 𝐼𝑑𝑛 

• Total gain is a product 

of stage gain. 

• Collection efficiency 𝛼 

𝛿 = 𝑎𝐸𝑘

𝐼𝑑𝑛  = 𝛿𝑛𝐼𝑑 𝑛−1

𝐼𝑜𝑢𝑡  = 𝐼𝑑0𝛼𝛿1𝛿2 …𝛿𝑛

𝜇 =
𝐼𝑜𝑢𝑡

𝐼𝑑𝑜
= 𝛼𝛿1𝛿2 …𝛿𝑛

𝜇 ≅ 𝛼 𝑎
𝑉

𝑛 + 1

𝑘 𝑛

= 𝐴𝑉𝑘𝑛

 

 

Slide courtesy of M. Fortner, N. Illinois University 
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• Photomultiplier tubes 

often have 10-14 stages. 

• Gain in excess of 107 

• A single photon can 

produce a measurable 

charge. 

• Single photoelectron 

• 𝑄pe ~ 10-12 C 

• Fast response in about 1 

ns. 

• 𝐼pe ~ 1 mA 

 

Amplifier 

Slide courtesy of M. Fortner, N. Illinois University 
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• Phototubes have 

“dark” current even 

with no incident light. 

• Thermionic emission 

• Anode leakage 

• Case scintillation 

• Gas ionization 

• This increases with 

applied voltage. 

 

Dark Current 

Slide courtesy of M. Fortner, N. Illinois University 
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