

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Musings on EMMATrap

July 19, 2016 - TRIUMF

D. Lascar | Postdoctoral Fellow | TRIUMF T. Brunner | Professor | McGill & TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

What do masses tell us?

- Nuclear Masses of Rare Isotopes:
 - Magic numbers of • exotic nuclei (new shell closures)

 R-process waiting points

TRIUMF

- Inform theory
- CKM matrix

July 19,

2016

Slide courtesy of B. Kootte

	δm/m
General physics & chemistry	≤ 10 ⁻⁵
Nuclear structure physics - separation of isobars	≤ 10 ⁻⁶
Astrophysics - separation of isomers	≤ 10 ⁻⁷
Weak interaction studies	≤ 10 -8
Metrology - fundamental constants Neutrino physics	≤ 10 ⁻⁹
CPT tests	≤ 10 ⁻¹⁰
QED in highly-charged ions - separation of atomic states	≤ 10 ⁻¹¹

Exotic nuclei at EMMA

Physics Motivation

July 19,

2016

2016 ARIEL Science Workshop

Advantages of EMMATrap

- Contamination reduction of ~10⁵
- Access to exotic nuclei

July 19,

2016

Not limited by ISAC target chemistry

The community has moved to neutron-rich

July 19,

2016

RIUMF

Image courtesy of S. Eliseev

Norwegian Séa

The *rp*-process

- Waiting Points require nuclear masses
- 2*p* channel daughters have never been measured

Xe (54 (53)

Sb (51) Sn (50)

In (49

The *rp*-process case ⁷⁰Kr

The *rp*-process case ⁷⁰Kr

Stellar reaction rates

- Paper details a list of more than 1,000 nuclei that contribute to asymmetric reaction rates in:
 - (α, γ)
 - (*p*, *γ*)

• (γ, n)

- PHYSICAL REVIEW C 88, 035803 (2013)
- (*p*, *n*) Suppression of excited-state contributions to stellar reaction rates
- (α, n) T. Rauscher*
- (α, p)

July 19,

2016

- Most are neutron-deficient
- This is a goldmine of astrophysical motivation

Nuclear structure – ¹⁰⁰Sn

Two production mechanisms:

⁵⁰Cr + ⁵⁸Ni

- ^{124/3}Xe Fragmentation
 - Hinke et al, *Nature* **486** 7403 (2012)

 $B_{o} = 0$

B_E= 4MeV

Slide courtesy of T. Brunner

Slide courtesy of T. Brunner

EMMA without trap

Gas stopper cell

Slide courtesy of T. Brunner

Design of cryogenic gas catcher for the Super-FRS @ FAIR From http://www.euroschoolonexoticbeams.be/site/files/2013_05_ExoBeams13_PThirolf_GasCell.pdf

- Gas stopper cells used at fragmentation facilities to stop RI-beams (GSI/FAIR, FRIB, RIKEN, KUL Leuven, CARIBU @ ANL, ...)
- Extraction efficiencies of >10% have been observed
- Extraction times on the order of 10ms
- Up to 10³ ions/s space charge effects negligible; at higher ion intensities reduced transmission efficiency due to space-charge effects
- Extreme pure gas required to reduce charge exchange and neutralization in the gas July 19, 2016 ARIEL Science Workshop 13

RF funnel concept

Slide courtesy of T. Brunner

RF-funnel concept for Ba-tagging:

- Converging-diverging nozzle
- 2 Stacks total 301 electrodes RF-field applied to electrodes
 - $P_{A} = 10$ bar, $P_{B} = 1$ mbar

 $V_{RF} = 120 \text{ V}, f = 10 \text{ MHz}$ Simulated Ba⁺ transmission ~95% $V_{RF} = 25V, f = 2.6 \text{ MHz}$ Simulated Ba⁺ transmission ~72%

Possible to extract ions from 10 bar Xe \rightarrow initial design (and Ba-tagging design) by V. Varentsov for ion extraction from 0.1-1bar He \rightarrow Optimization of design by

- V. Varetsov at GSI-FAIR
- \rightarrow Extraction times O(10ms)

Linear Paul Trap

Necessary ingredients

- 250 kHz to 1 MHz RF along the electrodes
- Axial DC gradient
- Buffer gas cooling on the order of a few ms

Viscous drag model calculation

Similar to TITAN RFQ NIMA 676 (2012) 32

July 19,

2016

Slide courtesy of T. Brunner

Resolution limited by dispersion of MR TOF

TRIUMF

July 19,

2016

Fig. 11. Mass resolving power as a function of the observation time for ISOLTRAP's precision Penning trap (B = 5.9T) and MR-ToF MS for a typical ion of $A/z \approx 90$.

Penning trap

Cyclotron frequency: $v_c = \frac{1}{2 - \frac$

 $\frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$

Superposition of

- strong magnetic field
- weak electrostatic quadrupole field

Motion of ions well understood: Three Eigenmotions can be coupled using RF

$$\nu_- + \nu_+ = \nu_c = \frac{1}{2\pi} \frac{q}{m} B$$

Allows us to manipulate motion: transfer from one motion into the other

 $\delta m/m > 10^{-7}$ Half lives below 10ms measured at TITAN

Summary

- EMMATrap allows measurement of very exotic isotopes that are inaccessible through ISAC
- All techniques proposed for EMMATrap well established at radioactive ion facilities
- Local ion trapping expertize at TITAN
- Ion extraction development using RF funnel at McGill in collaboration with V. Varentsov

Thank you! Merci

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Canada's national laboratory for particle and nuclear physics

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

